a ’ International Journal of Theoretical & Applied Sciences,

8(2): 24-28(2016)

ISSN No. (Print): 0975-1718
ISSN No. (Online): 2249-3247

Coupled Fixed Point Theorem in Menger Space

V. H. Badshah*, Suman Jain**, Arihant Jain™" and Subhash Mandloi’

*School of Studies in Mathematics, Vikram University, Ujjain, (Madhya Pradesh) 456010 India
“Department of Mathematics, Govt. College, Kalapipal, (Madhya Pradesh) 456010 India
““Department of Applied Mathematics,

Shri Guru Sandipani Institute of Technology and Science, Ujjain, (Madhya Pradesh) 456550 India

(Corresponding author: Arihant Jain)
(Received 01 June, 2016 accepted 10 July, 2016)
(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: The purpose of this paper is to introduce the new concept of occasionally weakly compatible
mappings for coupled maps and prove a coupled fixed point theorem under more general t-norm (H-type
norm) in Menger space. Finally, we also given an application.
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I. INTRODUCTION

Menger [10] introduced the notion of a probabilistic
metric space (PM-space) which was, in fact, a
generalization of metric space in the year 1942. The
idea behind this is to associate a distribution function
with a pair of points, say (p,q), denoted by F, ,(t) where
t > 0 and interpret this function as the probability that
distance between p and q is less than t, whereas in the
metric space, the distance function is a single positive
number. Sehgal [13] initiated the study of fixed points
in probabilistic metric spaces. The study of these spaces
was expanded rapidly with the pioneering works of
Schweizer and Sklar [12]. In 1991, Mishra [11]
introduced the notion of compatible mappings in the
setting of probabilistic metric space. In 1996, Jungck
[8] introduced the notion of weakly compatible.
Further, Singh and Jain [14] proved some results for
weakly compatible in Menger spaces. Cho, Murthy and
Stojakovik [2] proposed the concept of compatible
maps of type (A) in Menger space and gave some fixed
point theorems. Recently, using the concept of
compatible mappings of type (A), semi-compatibility
and occasionally weak compatibility in Menger space,
Jain et. al. [5, 6, 7] proved some interesting fixed point
theorems in Menger space. Fang [3] defined ¢-
contractive conditions and proved some fixed point
theorems under ¢-contractions for compatible and
weakly compatible maps in Menger PM-spaces using t-
norm of H-type, introduced by HadZi¢ et. al. [4].
Recently, Bhaskar and Lakshmikantham [1],
Lakshmikantham and Ciri¢ [9] gave some coupled
fixed point theorems in partially ordered metric spaces.
Now, we introduce the new concept of occasionally
weakly compatible mappings for coupled maps and

prove a coupled fixed point theorem under more
general t-norm (H-type norm) in Menger space.

II. PRELIMINARIES

Definition 2.1. [15] A mapping F : [0, «) — [0,1] is
called a distribution function if it is non-decreasing and
left-continuous with inf,.g F(x) = 0. If in addition F(0)
=0, then F is called a distance distribution function.

A distance distribution function F satisfying lim,_,..F(t)
=1 is called a Menger distance distribution function.
The set of all Menger distance distribution functions is
denoted by D*. This space D" is partially ordered by the
usual pointwise ordering of functions, that is, F <G if
and only if F(t) < G(t) for all t € [0, o). The maximal
element for D* in this order is the distance distribution
function €&, given by

8(t)_o , t=0
T, >0,

Definition 2.2. [15] A triangular norm (shortly, t-norm)

is a binary operation A on [0,1] satisfying the following

conditions:

(1) A is associative and commutative;

(2) A is continuous;

(3)A(a, 1)=aforallae [0, 1];

(4) A(a, b) < A(c, d) whenever a < c and b <d for all a,

b, c,de [0,1].

Two typical examples of the continuous t-norm are

A,(a,b) = ab, Ay(a,b) = min{a, b} for all a, b e [0,1].

Now, the t-norm is recursively defined by A' = A and
A" e Xnet) = AA™ (X1, s Xa), Kna)

foralln>2and x;€ [0,1],i=1,2,...,n+ 1.
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A t-norm A is said to be of HadZi¢-type if the family
{A"} is equicontinuous at x = 1, that is, for any
€ € (0,1), there exists & € (0,1) such that

a>1-80 = A'@>1-¢
foralln>1.
Ay is a trivial example of a t-norm of HadZi¢-type [11].
Definition 2.3. [15] A Menger probabilistic metric
space (briefly, a Menger PM-space) is a triple (X, F, A),
where X is a nonempty set, A is a continuous t-norm
and Fis a mapping from X x X — D" (Fy, denotes the
value of & at the pair (x,y)) satisfying the following
conditions:
(PM-1) F,(t) = 1 for all x, y € X and t > 0 if and only
ifx=y;
(PM-2) F, ((t) = F,x (t) forall x, y € X and t > 0;
(PM-3) Fy,(t +5) 2 A(F, (1), Fy,(s)) for all x, y,z € X
and t, s > 0.
Definition 2.4. [15] Let (X, F, A) be a Menger PM-
space.
(1). A sequence {x,} in X is said to be convergent to a
point x € X (write x, = X) if, forany t >0 and 0 < € <
1, there exists a positive integer N such that
Fy () > 1-¢
whenever n > N;
(2). A sequence {x,} in X is called a Cauchy sequence
if, for any t > 0 and 0 < € < 1, there exists a positive
integer N such that
F"n* Xm(t) > 1 - € whenever m, n > N.

(3). A Menger PM-space (X, F A) is said to be
complete if every Cauchy sequence in X is convergent
to a point in X.

Definition 2.5. [1] Let X be a non-empty set and T :
XxX — X be a mapping. An element (x, y) € XxX is
said to be a coupled fixed point of T if

Tx, y)=x, T(y,x)=y.

Definition 2.6. [9] Let X be a non-empty set and T :
XxX — X, h: X — X be two mappings.

(1) An element (x, y) € XxX is said to be a coupled
coincidence point of h and T if

T(x, y) =h(x), T(y, x) =h(y);

(2) An element (x, y) € X x X is said to be a coupled
common fixed point of h and T if

T(x, y)=h(x) =x, T(y,x)=h(y)=y.

Definition 2.7. [15] Let (X, F A) be a Menger PM-
space and T : X x X -5 X, h: X X be two
mappings. The mappings T and h are said to be weakly
compatible (or w-compatible) if they commute at their
coupled coincidence points, i.e., if (X, y) is a coupled
coincidence point of T and h, then g(F(x, y)) = F(gx,
gy)-

Definition 2.8. Let (X, F, A) be a Menger PM-space
and T: X x X - X, h: X — X be two mappings. The
mappings T and h are said to be occasionally weakly
compatible if there is a point x € X which is a coupled
coincidence point of f and g at which f and g commute.

Definition 2.9. [12] Define ® = { ¢: R" — R"}, where
R* = [0, + ) and each ¢ € @ satisfies the following
conditions :

(¢-1) ¢ is non-decreasing;
(¢-2) ¢ is upper semi-continuous from the right;

(-3) D 0"(t) <oo for all t > 0, where ¢"'(t) =
n=0

o0"®), ne N,

Clearly, if ¢ € &, then ¢(t) <t for all t > 0.

III. MAIN RESULT

Theorem 3.1. Let (X, F *) be Menger PM-Space, *
being continuous t-norm of H-type. Let f: X xX — X
and g : X — X be two mappings and there exists
0 € @ such that followings hold:

(3.1) Ff(w),f(u,V)(q)(t)) 2 (FEX,Eu(t)*FE%EV(t))’ for all x,
y,u, vin X and t > 0;

3.2) Suppose that f(X x X) < g(X);

(3.3)  pair (f, g) is occasionally weakly compatible;
(3.4) range space of one of the maps f or g is
complete.

Then f and g have a coupled coincidence point. More-
over, there exists a unique point x in X such that f(x,y)

=g(x).
Proof. Let x,,y, be two arbitrary points in X . Since
f(XxX) c g(X), we can choose

Xy, ¥1 in X such that g(x)) = f(Xo,y0), g(y1) = f(yo,X0)-
Continuing in this way we can construct two sequences
{xn} and {yn} in X such that

2(Xn+1) = f(Xn, Yu) and g(yas1) = f(yn, Xa) for all
n=0.
Step 1. Firstly we show that {gx,} and {gy.} are
Cauchy sequences.
Since * is a t-norm of H-type, for any € > 0, there exists
&> 0 such that

3.5 (1-8)*(1-8)*..*(1-8) = (1—¢), forall
P
pe N.
Since lim F,y(t) =1, for all x, y in X, there exists ty> 0
t—oo
such that

Foxy ex,(to) 2 (1- 8) and
Foyo oy, (t) > 1-8.

Since ¢ € @ and using condition (¢-3), we have

Z¢n(t0) < oo, Then for any t > 0, there
n=l
exists ng € N such that

G6)  t> i 0 (t,).

k=n,
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From (3.1), we have
Fox ex,(0(t0)) = Fixy ) 1,9 p(9(t0))

2 Faxex,(t0)*Fay gy, (to)
Fity gy, (9(t0))

> Fyy, gy, (t0) * Fiony g, (t0)-
Similarly, we can also get
Py ey (0°(t0)) =
> Fy g, (0(60))"Foy g, (0(t0))
Fay, oy (07(t0)) = Fry 1 . 1ty 1) (07(t0))

> [Fay,, gy, (t0)]*[Fox o, (t0)]*

Continuing in this way, we can get

Fo e, (0"00) 2 [Foy o (0 *{Feyy o, (P

n-1 n-1
Foy gy (0°(10) 2 [Fyy oy () * [Fi g, (t0)])
So, from (3.5) and (3.6), for m > n > n,, we have

i 0" (ty)

k=n,

Z¢ (ty)

> Fy oo (¢ o+ F e
oo, (0™ (1))
> [([Foger, @F
{[Fasy ex, (0T
* [Fyy s, 0] *...
H[Fyy e, @1 )]
= [y, (P @0 [F
> (1-8)*(1-8)*...

2" (2™ 1)

Fyy ey, (0(t0)) =

Fitx ey (07(t0)

Fo e, 2 Fp o

gx gXm

n+l’gxn+2(¢n+l(t0)) L

% on-1 "
(Fey, &, ()]}

“([Fo s,

2n-l<2m-n_ 1
2y gyl(tO)]

*1-8)=(1-¢)

which implies that

ngn, gxm(t) >(1-¢),foral m ne N withm>n 2n,g
and t > 0.

So, {gx,} is a Cauchy sequence. Similarly, we can get
that {gy,} is also a Cauchy sequence.

Step 2. Now we show that f and g have a coupled
coincidence point.

Without loss of generality, we assume that g(X) is
complete, then there exists points x, y in g(X) so that

hm g(XnH) =X, hm g(YnJrl) y.

n—>c0

Again x, y € g(X) 1mphes the existence of p, q in X so

that 2(p) = X,

g(q) =y and hence lim 2(Xp41) = hm f(Xn, Yn) =
n—eo

g(p) =X,

lim g(y,.) = hm f(yn, X») = g(q) =

n—sco

From (3.1),

Fie oy 10.0(00) 2 Fox o)D) * Fyy aq)(1).
Taking limit as n — oo, we get

Fey0.0(§(1) =1 that is, f(p,q) = g(p) = x.
Similarly, f(q, p)=g(q) =Y.
But fand g are occasionally weakly compatible, so
that f(p,q) = g(p) =x and f(q,p) = g(q) =y implies
gf(p, @) = f(g(p), &(q)) and gf(q, p) = f(g(q), g(p)), that
is g(x) = f(x,y) and g(y) = f(y,x).
Hence f and g have a coupled coincidence point.
Step 3. Now we show that g(x) =y and g(y) =x.
Since * is a t-norm of H -type, for any € > 0, there
exists >0 such that

1-9)*(1-0)*...

p

£(1-8) > (1-¢),

forallpe N.
Since lim F, y(t) =1, for all X, y in X, there exists t,
t—oo0

> (0 such that

Fuu(t) 2 (1 -8 and
0e Pand

(¢ -3), we have

> (1 - 9). Since
condition

ng,x(tO)
using

Z¢n(t0) < oo, Then for any t > 0, there
n=l
exists ng € N such that

S k
t> > 08 (1)
k=n,
Using (3.1), we have
Fox gy, (0(t0) = Frxyysiy, x,) (9(t0))
2 ng, gyn(t()) * ng, gxn(to)-

Letting n — oo, we get

FHx,y(q)(tO)) 2 FHx,y(tO) * FHy,X(tO)-
By this way, we can get for all ne N,

gx y(q) (tO)) 2 ng y(q)n (tO)) ng x(q)n l(tO))
0l 2 [ng y(tO)] *[ng,
(N

thus, we have

Foy®2 E, (| D05 (ty)

k=n,

gx y(¢no(to )

> [Fay () # [Fyy ()"
>

1-9)*1-9)*...

2"0
So, for any € > 0, we have Fy ((t) = (1-€), forall t > 0.
This implies g(x) = y. Similarly, g(y)=x.
Step 4. Next we shall show that x =y.

*1-8)=(1-¢).
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Since * is a t-norm of H-type, for any € > 0, there exists
8> 0 such that

1-9)*1-9)*..*(1-8) = (1-¢),

P
forallpe N.
Since lim Fy y(t) =1, for all X, y in X, there exists to
t—oo

>0 such that
Fy y(to) = (1-9).

Since ¢ € P and using condition (¢ -3), we have

20" (tg) <.
n=l]

Then for any t > 0, there exists ny € N such that

t> > 0" (ty).
k=n,
Using (3.1), we have
Farg e 1 (000)) = By, (Ot0))
> Fy g () * Fyy o ().
Letting n — oo, we get

Fx,y(q)(t())) 2 Fx,y(tO) * Fy,x(tO)-
By this way, we can get for all n € N, F, ,(t)=

E | 3okt

k=n,

>F, (0" (ty))

[Fy (0] # [Fy (o)
1-0)*(1-9)*..*1-0)=>(1—-¢)

2"0
which implies that x =y.
Thus, f and g have a common fixed point x in X.
Step S. Uniqueness.
Suppose z be any point in X such that z #x with
g(z) =z =1(z, z).
Since * isa t-norm of H-type, for any € > 0, there
exists >0 such that

1-9)*(1-9)*..*(1-8) = (1-¢),

[\

P
forallpe N.
Since lim Fy y(t) =1, for all X, y in X, there exists to
t—oo

>0 such that
Fx,z(tO) 2 (1 - 6)

Since ¢ € P and using condition (¢ -3), we have

Zq)n (to) < oo,
n=l

Then for any t > 0, there exists ny € N such that

t> 0" (ty).
k=n,
Using (3.1), we have
Fy, 2(¢(t0)) = Fix, .1z, 2)(9(to))
Fo), a2(t0) * Futx, s (to) ,
Fx, z(tO) * Fx, z(tO)[Fx, z(tO)] .

v

Thus, we have

Fx,z(t) 2 Fx’ zZ Z q)k(to)
k=n,

>F (0" (1)

> ([Fe ()] )2
[Fy. ()] >
> (1-8)*(1-8)*..*(1-8) = (1—¢)

2"0

vV

’

which implies that x = z.
Hence, f and g have a unique common fixed point in X.
Next we give an application of Theorem 3.1.

IV. AN APPLICATION

Theorem 4.1. Let (X, F *) be a Menger PM-space, *
being continuous t-norm defined by a*b = min{a,b} for
all a b in X. Suppose P and Q be occasionally
weakly compatible self maps on X  satisfying the
following conditions:

(4.1) P(X) € Q(X),

(4.2) there exists ¢ € & such that

Fpy py(9(t)) = Foy, qy(t) forall x, yin X and t > 0.

If range space of any one of the maps P or Q is
complete, then P and Q have a unique common fixed
point in X.

Proof. By taking f(x,y) = P(x) and g(x) = Q(x) for all
X, y € X in Theorem 3.1, we get the desired result.
Taking ¢(t) = kt, k € (0, 1), we have the following:
Corollary 4.1. Let (X, F, *) be a Menger PM-space, *
being continuous t -norm defined by a*b = min{a,b) for
all a, b in X . Suppose P and Q be occasionally weakly
compatible self maps on X satisfying (4.1) and the
following condition:

(4.3)  there exists ke (0,1) such that

Fpy py(kt) 2 Foe qu(t) for all x,yin X andt>0.
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If range space of any one of the maps P or Q is
complete, then P and Q have a unique common fixed
point in X.
Taking Q = I, the identity map on X, we have the
following:
Corollary 4.2. Let (X, F *) be a Menger PM-space, *
being continuous t-norm defined by a*b = min{a, b} for
all a, b in X. Suppose p and Q be occasionally weakly
compatible self maps on X satisfying (4.1) and the
following condition:
“4.4) there exists k € (0,1) such that

Fpypy(kt) = F(t) forall x, yin X and t>0.
If range space of the map P is complete, then P and Q
have a unique common fixed point in X.
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